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Ostwald process and ammonia oxidation
Stage 1

4 NH3 + 3 O2 → 6 H2O + 2 N2
4 NH3 + 4 O2 → 6 H2O + 2 N2O
4 NH3 + 5 O2 → 6 H2O + 4 NO

Stage 2
2NO + O2 → 2 NO2

3 NO2 + H2O → 2 HNO3 + NO

Fertiliser synthesis
HNO3 + NH3 → NH4NO3

Ostwald process:
1. Producing NO from NH3 (ammonia oxidation).

2. Producing HNO3 from NO .

Why HNO3 ?
• Fertiliser synthesis: ≈ 60 million tonnes/year.
• TNT, mining industry.

Other applications for ammonia oxidation:
• "Slip reaction", remove undesired NH3 from

industrial exhaust.
• Environmental reasons (NH3 is a major air

pollutant.)
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Ostwald process: industrial conditions

200°C 300°C 400°C 500°C 600°C 700°C 800°C 900°C

NON2ON2
a)

Figures adapted from literature review1.

NO selectivity increases with temperature,

and O2 / NH3 partial pressure ratio.

→ navigate between conditions to understand the production of NO or N2.

1Hatscher et al. Handbook of Heterogeneous Catalysis: Ammonia Oxidation, John Wiley & Sons, Ltd, 2008
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Ostwald process: industrial conditions

0.1 mm

0.1 mm

SEM images of Pt-Rh reconstructed gauzes with cauliflower patterns after
use in industry2.

• Industrial catalysts undergo an
activation process.

• Roughening linked to oxides, and
high temperature gradient areas.

• Final deactivation process linked to
oxides reported.

• Rhodium increases NO selectivity,
and limits the loss of platinum.

2Bergene et al. Surface Areas of Pt–Rh Catalyst Gauzes Used for Ammonia Oxidation, JoC, 1996
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The material and pressure gap
"A long standing conundrum in the catalysis community emerged at the

interface between surface science and heterogeneous catalysis, better
known as the pressure and material gap."

Nature Catalysis editorial, 2018.

Pressure Material Temperature
Industrial conditions 1 bar to 12 bar Knitted Pt-Rh gauzes 750 ◦C to 900 ◦C

(wires, diameter ≈80 µm)
This study Near ambient Pt single crystals 25 ◦C to 600 ◦C

pressure and Pt particles
(1 mbar to 500 mbar)
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Near-ambient pressure synchrotron techniques
Technique Surface X-ray

Bragg Coherent X-ray Photoelectron

Diffraction (SXRD)

Diffraction Imaging Spectroscopy (XPS)
(BCDI)

Sample Pt(111) and Pt(100)

Isolated Pt(111) and Pt(100)

single crystals

Pt particles single crystals

and Pt particles
Information Surface structure,

Shape, 3D displacement Surface species presence,

roughness, relaxation &
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of unique object state
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0 1 2
H (r.l.u.)

2.0

1.5

1.0

0.5

0.0

0.5

K 
(r.

l.u
.)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Introduction 10



Near-ambient pressure synchrotron techniques
Technique Surface X-ray Bragg Coherent

X-ray Photoelectron

Diffraction (SXRD) Diffraction Imaging

Spectroscopy (XPS)

(BCDI)
Sample Pt(111) and Pt(100) Isolated

Pt(111) and Pt(100)

single crystals Pt particles

single crystals

and Pt particles
Information Surface structure, Shape, 3D displacement

Surface species presence,

roughness, relaxation & and strain arrays

quantity & oxidation

crystallographic phases of unique object

state

Beamline SixS (SOLEIL) SixS (SOLEIL)

B-07 (Diamond Light Source)

0 1 2
H (r.l.u.)

2.0

1.5

1.0

0.5

0.0

0.5

K 
(r.

l.u
.)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Introduction 10



Near-ambient pressure synchrotron techniques
Technique Surface X-ray Bragg Coherent X-ray Photoelectron

Diffraction (SXRD) Diffraction Imaging Spectroscopy (XPS)
(BCDI)

Sample Pt(111) and Pt(100) Isolated Pt(111) and Pt(100)
single crystals Pt particles single crystals
and Pt particles

Information Surface structure, Shape, 3D displacement Surface species presence,
roughness, relaxation & and strain arrays quantity & oxidation
crystallographic phases of unique object state

Beamline SixS (SOLEIL) SixS (SOLEIL) B-07 (Diamond Light Source)

0 1 2
H (r.l.u.)

2.0

1.5

1.0

0.5

0.0

0.5

K 
(r.

l.u
.)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Introduction 10



Sample environment at SixS

Sample

Detector

Multi Environment Diffractometer (MED), experimental
end station at SixS (hard x-ray).

→ Study ammonia oxidation.

XCAT reactor cell and dome
for NAP experiments.

• Gas panel with mass flow
controllers (Argon, NH3 ,
O2 , . . . ).

• Sample heater (up to
600 ◦C at 1 bar).

• Mass spectrometer:
residual gas analyser
(RGA).
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I. Probing the average structure with surface x-ray diffraction 13



Conditions
Atmosphere 300 ◦C 500 ◦C 600 ◦C

Argon (inert gas) Catalyst state outside reaction (reference).

1 NH3 NH3 adsorption.
0.5 O2 + 1 NH3
1 O2 + 1 NH3

Influence of O2 / NH3 partial pressure ratio as a

2 O2 + 1 NH3
function of the temperature and vice-versa.

8 O2 + 1 NH3

Argon (inert gas) Probing cycle reproducibility.

Product pressure evolution similar to reported literature behaviour!
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Heterogeneous catalysis is a surface process

• Pt particles have a faceted shape.

• Reaction steps happen on the catalyst surface.

• Surface atoms of different facets have different environments (e.g.
coordination number).

• Explore correlation between specific facets and reaction products.

→ Property of diffraction: important signal perpendicular to those facets!
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Collective behaviour of Pt particles
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Collective behaviour of Pt particles
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Collective behaviour of Pt particles: 600 ◦C
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Collective behaviour of Pt particles: 600 ◦C
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Collective behaviour of Pt particles: 600 ◦C
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Collective behaviour of Pt particles: 600 ◦C
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Pt particles: summary

• Initial shape consists mostly of {100}, {110}, {111}, and {113} facets.

• Stable particle shape below 600 ◦C.

• Global re-shaping initiated at 600 ◦C during reaction.

• Continues with increasing oxygen pressure, linked to increased NO production?

→ Prevalence of {111} and {100} facets over {113} and {110} facets.

How to obtain more detailed information about single particles?
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Pt particles: summary

• Initial shape consists mostly of {100}, {110}, {111}, and {113} facets.

• Stable particle shape below 600 ◦C.

• Global re-shaping initiated at 600 ◦C during reaction.

• Continues with increasing oxygen pressure, linked to increased NO production?

→ Prevalence of {111} and {100} facets over {113} and {110} facets.

How to obtain more detailed information about single particles?

I. Probing the average structure with surface x-ray diffraction 18



Pt particles: summary

• Initial shape consists mostly of {100}, {110}, {111}, and {113} facets.

• Stable particle shape below 600 ◦C.

• Global re-shaping initiated at 600 ◦C during reaction.

• Continues with increasing oxygen pressure, linked to increased NO production?

→ Prevalence of {111} and {100} facets over {113} and {110} facets.

How to obtain more detailed information about single particles?

I. Probing the average structure with surface x-ray diffraction 18



Pt particles: summary

• Initial shape consists mostly of {100}, {110}, {111}, and {113} facets.

• Stable particle shape below 600 ◦C.

• Global re-shaping initiated at 600 ◦C during reaction.

• Continues with increasing oxygen pressure, linked to increased NO production?

→ Prevalence of {111} and {100} facets over {113} and {110} facets.

How to obtain more detailed information about single particles?

I. Probing the average structure with surface x-ray diffraction 18



Pt particles: summary

• Initial shape consists mostly of {100}, {110}, {111}, and {113} facets.

• Stable particle shape below 600 ◦C.

• Global re-shaping initiated at 600 ◦C during reaction.

• Continues with increasing oxygen pressure, linked to increased NO production?

→ Prevalence of {111} and {100} facets over {113} and {110} facets.

How to obtain more detailed information about single particles?

I. Probing the average structure with surface x-ray diffraction 18



Pt particles: summary

• Initial shape consists mostly of {100}, {110}, {111}, and {113} facets.

• Stable particle shape below 600 ◦C.

• Global re-shaping initiated at 600 ◦C during reaction.

• Continues with increasing oxygen pressure, linked to increased NO production?

→ Prevalence of {111} and {100} facets over {113} and {110} facets.

How to obtain more detailed information about single particles?

I. Probing the average structure with surface x-ray diffraction 18



BCDISXRD

Average
behaviour

Bulk and
Facet strain

Single
particle

Understand
catalyst
structure

Shape 
change

Group of 
particles

II. Single particle structural study with Bragg coherent diffraction imaging 19



BCDI at SixS
• Complementary with Surface X-Ray Diffraction.

• Same reactor cell allowing NAP operando experiments.

Coherence optical elements used at SixS (8.5 keV).

Beam stop FZP OSA Beam
Diameter 80 µm 300 µm 70 µm ≈ 1 µm

Reactor cell and dome.

Optical elements.
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Patterned sample used for BCDI
• (0001)-oriented sapphire (α-Al2O3)

substrate.
• (111)-oriented particles.
• 24 h annealed in air at 1100 ◦C.

• Patterned sample.

100 
µm

Mask applied during sample preparation.

Sample holder (left) and dome (right).

Microscope image (left).
Sample map performed in Bragg condition in

≈5 min (right).
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BCDI data collection

Sample

Detector

Multi Environment Diffractometer (MED),
experimental end station at SixS.

I(q⃗) ∝ |F (q⃗)|2

F (q⃗) =
Natoms∑

j

fj(q⃗)e i q⃗.R⃗j
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Measuring 3D diffraction patterns at SixS

Sample

Detector

Multi Environment Diffractometer (MED),
experimental end station at SixS.

I(q⃗) ∝ |F (q⃗)|2

F (q⃗) =
Natoms∑

j

fj(q⃗)e i q⃗.R⃗j

Coherent fringes visible in multiple directions
in 3D diffraction pattern.
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Phase retrieval

Coherent Bragg peak.

ρ(r)e

Support

’ρ (r)e A(q)e

√ I(q)e i (Φ q)IFT

FT

A(q) = √I(q)

i (Φ q)

iΨ(r)

iΨ(r)

Phase retrieval with PyNX using iterative algorithms3.

3Favre-Nicolin et al. Fast computation of scattering maps of nanostructures using graphical processing units,
JAC, 2011
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Phase retrieval

Coherent Bragg peak.

Reconstructed particle.

Phase retrieval with PyNX using iterative algorithms3.

Complex object: ρ(⃗r)e i G⃗hkl .⃗u(⃗r)

Phase ∝ projection of displacement field!

3Favre-Nicolin et al. Fast computation of scattering maps of nanostructures using graphical processing units,
JAC, 2011
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BCDI data analysis workflow

Flow chart of the main steps in the BCDI
data analysis workflow.

Interactive widgets for data analysis.

Open access4: GitHub.com/DSimonne/Gwaihir#welcome

4Simonne et al. Gwaihir: Jupyter Notebook graphical user interface for Bragg coherent diffraction imaging, JAC,
2022
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Facets on Pt particles
Small particle: � ≈ 350 nm.

(111)

(011)

(-111)

(010)

(-11-1)

(-110)(01-1)

(110)

(11-1)

(-100)(00-1)

(-13-1)

(-131)(13-1)

Large particle: � ≈ 800 nm.

(111)

(011)

(-111)(010)

(-11-1)

(-110)
(01-1)

(1
10
)

(11-1)

(-100)(00-1)

• Difference in size, shape, and in the type of facets exhibited.

• Most of the facets have low Miller indices, {100}, {110}, {111}.

• The smaller particle has more ’open’ facets, such as {113}.
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Pt particles: summary
How to obtain information about single particles? → Use BCDI!

• Different evolution for particles of different size, shape, and initial strain state.

• Structural changes at 400 ◦C above O2 / NH3 : 1 on small particle, conditions favouring
NO.

• Large particle reacts only to ammonia.

• Single and collective behaviours are different.

How to obtain information about specific facets?
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Conditions
Atmosphere (450 ◦C) Interest

Argon (inert gas) Catalyst state without reactants (unactive).
High O2 pressure Surface oxidation
8 O2 + 1 NH3 Influence of (O2 / NH3 )

0.5 O2 + 1 NH3 partial pressure ratio
NH3 Ammonia adsorption

Argon (inert gas) Probing cycle reproducibility
Low O2 pressure Surface oxidation

a) b)

Large reactor used at SixS (a), and single crystal sample (b).
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Pt(111): structures appear under 80 mbar of O2

Argon NH3 O2
(mbar) (mbar) (mbar)
500 0 0
420 0 80
410 10 80
485 10 5
490 10 0
500 0 0
495 0 5

Partial pressures during reaction
cycle.

In experimental order.

Rotated lattices: red and gray
diamonds.

Surface oxide: black diamond.
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Reciprocal space map under 80 mbar of oxygen.

9h30 after oxygen exposure.
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Pt(111): reaction conditions, O2 / NH3 : 8

Argon NH3 O2
(mbar) (mbar) (mbar)
500 0 0
420 0 80
410 10 80
485 10 5
490 10 0
500 0 0
495 0 5

Partial pressures during reaction
cycle.

In experimental order.

The addition of ammonia removes
all the signals.
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Pt(111): reaction conditions, O2 / NH3 : 0.5

Argon NH3 O2
(mbar) (mbar) (mbar)
500 0 0
420 0 80
410 10 80
485 10 5
490 10 0
500 0 0
495 0 5

Partial pressures during reaction
cycle.

In experimental order.
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Pt(111): only ammonia

Argon NH3 O2
(mbar) (mbar) (mbar)
500 0 0
420 0 80
410 10 80
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490 10 0
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495 0 5

Partial pressures during reaction
cycle.

In experimental order.
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Pt(111): back to inert atmosphere

Argon NH3 O2
(mbar) (mbar) (mbar)
500 0 0
420 0 80
410 10 80
485 10 5
490 10 0
500 0 0
495 0 5

Partial pressures during reaction
cycle.

In experimental order.

The initial surface is reproducible.
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Pt(111): low oxygen pressure (5 mbar)

Argon NH3 O2
(mbar) (mbar) (mbar)
500 0 0
420 0 80
410 10 80
485 10 5
490 10 0
500 0 0
495 0 5

Partial pressures during reaction
cycle.

In experimental order.

→ Rotated lattices visible from
the start.

→ Surface oxides appears later
under lower oxygen pressure!

0 1

0

1

H (r.l.u.)

K
 (r

.l.
u.

)

a)

δt = [0h00, 0h34]

III. Pt single crystals during ammonia oxidation 42



Pt(111): low oxygen pressure (5 mbar)

Argon NH3 O2
(mbar) (mbar) (mbar)
500 0 0
420 0 80
410 10 80
485 10 5
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495 0 5

Partial pressures during reaction
cycle.

In experimental order.

→ Rotated lattices visible from
the start.

→ Surface oxides appears later
under lower oxygen pressure!
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Pt(111): low oxygen pressure (5 mbar)

Argon NH3 O2
(mbar) (mbar) (mbar)
500 0 0
420 0 80
410 10 80
485 10 5
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495 0 5

Partial pressures during reaction
cycle.

In experimental order.

→ Rotated lattices visible from
the start.

→ Surface oxides appears later
under lower oxygen pressure!

0 1

0

1

H (r.l.u.)

K
 (r

.l.
u.

)

0

1

K
 (r

.l.
u.

)

a) b)

δt = [0h00, 0h34]

c)

δt = [0h41, 4h03]

δt = [14h35, 15h57]

0 1
H (r.l.u.)

III. Pt single crystals during ammonia oxidation 42



Pt(111): low oxygen pressure (5 mbar)

Argon NH3 O2
(mbar) (mbar) (mbar)
500 0 0
420 0 80
410 10 80
485 10 5
490 10 0
500 0 0
495 0 5

Partial pressures during reaction
cycle.

In experimental order.

→ Rotated lattices visible from
the start.

→ Surface oxides appears later
under lower oxygen pressure!
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Pt(111): crystal truncation rods
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→ Roughness changes linked to oxygen presence are clearly visible.
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Pt(111): summary

O2 (mbar) NH3 (mbar) Pt(111)
80 0 Two rotated hexagonal lattices,

Surface oxide after 9 h30 min
Increased surface roughness

80 10 Removal of all signals
5 10 Decreased surface roughness
0 10 Weak strain changes
0 0 Return to clean surface

but with lower roughness
5 0 Rotated lattices also visible.

Surface oxide measured later.

Does the Pt(100) surface exhibit the same behaviour?
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Pt(100)

b

a

Atoms on the Pt(100) surface
follow a square arrangement.

0.0 0.5 1.0 1.5 2.0
H (r.l.u.)

2.0

1.5

1.0

0.5

0.0

K 
(r.

l.u
.)

1.5

2.0

2.5

3.0

3.5

4.0

4.5
5.0

b*

a*

Pt(100) bulk-terminated structure reciprocal space
in-plane map (Argon).
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Pt(100): structures appear under 80 mbar of O2

Argon NH3 O2
(mbar) (mbar) (mbar)
500 0 0
420 0 80
410 10 80
485 10 5
490 10 0
500 0 0
495 0 5

Partial pressures during reaction
cycle.

In experimental order.

Two family of peaks, one shifted
from the other.

Pt(100)-(2 × 2) bulk Pt3O4 is
formed!
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Pt(100): reaction conditions, O2 / NH3 : 8

Argon NH3 O2
(mbar) (mbar) (mbar)
500 0 0
420 0 80
410 10 80
485 10 5
490 10 0
500 0 0
495 0 5

Partial pressures during reaction
cycle.

In experimental order.

Reaction conditions favour NO .

Two family of peaks, one shifted
from the other.
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(10 × 10) reconstructions observed.
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Pt(100): reaction conditions, O2 / NH3 : 0.5

Argon NH3 O2
(mbar) (mbar) (mbar)
500 0 0
420 0 80
410 10 80
485 10 5
490 10 0
500 0 0
495 0 5

Partial pressures during reaction
cycle.

In experimental order.

Lowering O2 pressure to conditions
favoring N2 .
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→ Pt(100)-Hex reconstruction.
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Pt(100): only ammonia
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Pt(100): back to inert atmosphere

Argon NH3 O2
(mbar) (mbar) (mbar)
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Partial pressures during reaction
cycle.

In experimental order.
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Removing the reagents brings back the Pt(100)
bulk-terminated structure.
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Pt(100): low oxygen pressure (5 mbar)

Argon NH3 O2
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Pt(100)-Hex reconstruction linked to catalytic reaction!
Pt3O4 does not form at lower oxygen pressure!
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Pt(100): Low oxygen pressure (5 mbar)
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Pt(100): crystal truncation rods
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Pt(100): Pt3O4 contribution to Pt(100) CTR
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Pt3O4 is at the source of intensity on the Pt(100) CTR!

Pt

O

Pt3O4 unit cell5.

5Seriani et al. Catalytic Oxidation Activity of Pt3O4 Surfaces and Thin Films, Phys. Chem. B, 2006
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Pt(100): crystal truncation rods
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→ Important changes of roughness and surface strain are both visible.
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Single crystals: summary

O2 NH3 Pt(111) Pt(100)
(mbar) (mbar)
80 0 Two rotated hexagonal lattices, Pt(100)-(2 × 2) bulk Pt3O4,

Surface oxide after 9 h30 min. and signals shifted in H or K.
Increased surface roughness. Increased surface roughness.

80 10 Removal of all signals.

(10 × 10) reconstructions.

5 10 Decreased surface roughness.

Pt(100)-Hex reconstruction.

0 10

Progressive removal of Pt(100)-Hex.
Decreased surface roughness.

0 0 Return to clean surface

Return to clean surface

but with lower roughness.

but with lower roughness.

5 0 Rotated lattices also visible.

Transient structures,

Surface oxide measured later.

no Pt3O4, or shifted signals.

Can we identify the surface species responsible for the different behaviour?
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X-ray photoelectron spectroscopy
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Conclusion and perspectives
Conclusions

• Successfully measured Pt particles
operando, revealing different collective
and single behaviours.

• Identified different surface structures
under oxygen pressure for Pt(111) and
Pt(100).

• Revealed different stable structures during
reaction conditions on Pt(100) ...

• ... and that no ordered surface structure
is stable for Pt(111).

• Selectivity towards NO favoured for
Pt(100), linked to oxygen adsorption by
XPS.

Perspectives

• Understand the surfaces
structures discovered on Pt(111)
and Pt(100).

• Study Pt(113) and Pt(110)
single crystals.

• Explore role of platinum oxides
on NO selectivity at high
pressures.

• Measure surface oxides on Pt
particles with high resolution
BCDI.

• Study defect impact on strain
and adsorption/catalytic
properties.
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Reaction mechanism

• Langmuir-Hinshelwood mechanism
favoured7..

• NH3 de-hydrogenation facilitated by
adsorbed oxygen species.

• Oa overall responsible on Pt(111),
OHa on Pt(100).

• Low oxygen coverage →N2, high
oxygen coverage →NO.

7Imbihl et al. Catalytic ammonia oxidation on platinum: Mechanism and catalyst restructuring at high and low
pressure, PCCP, 2007
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→ (111)-orientated Pt particles on substrate.
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Pt(111)||α-Al2O3(0001) epitaxy
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{110} facet signal during SXRD
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Collective behaviour of Pt particles
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Facets retrieval

A mesh is constructed from the particle
voxels.

A mesh of the surface is created by the
marching-cubes algorithm, resulting in a
surface made out of triangles, that in 3D can
take up to 26 different orientations.

The surface is then smoothed to remove the
steps created by the voxel size.

The main parameters to retrieve the facets
are1:

• facet normal direction.
• facet size.
• roughness tolerance.

1Facet Analyser: ParaView plugin for automated facet detection and measurement of interplanar angles of
tomographic objects. Grothausmann, R., Beare, R. (2015) The MIDAS Journal



Diffraction patterns - small particle � ≈ 350 nm
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105a) 300°C – Argon – After reaction cycle
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Diffraction patterns - large particle � ≈ 800 nm
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106b) 300°C – After ammonia introduction
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Homogeneous strain
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Average interplanar spacing d111 evolution for small (left, � ≈ 350 nm) and large particle
(right, � ≈ 800 nm) as a function of the ammonia to oxygen ratio.

→ Different behaviours are observed!



Strain evolutions - large particle � ≈ 800 nm
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Large variation of the FWHM at 300 ◦C and 400 ◦C during ammonia introduction / removal.



Strain evolutions - small particle � ≈ 350 nm
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Pt particles: RGA signals during BCDI (300°C)
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Pt particles: RGA signals during BCDI (400°C)
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Pt particles: RGA signals during BCDI
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Similar behaviour as reported in literature.

Transition observed when O2 / NH3 : 2 → increased selectivity towards NO.



Pt particles: RGA signals during SXRD (300°C)
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Pt particles: RGA signals during SXRD (500°C)
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Pt particles: RGA signals during SXRD (600°C)
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Pt particles: RGA signals during SXRD
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Software architecture

Controller
Workflow for fast analysis
(pynx & bcdi packages)
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Dataset class based on NeXuS architecture

View
Remote access GUI initializes

updates overwrites



Software architecture

Controller
Workflow for fast analysis (pynx, bcdi, ...)

Result
Dataset class based on

NeXuS architecture

Advanced users can use terminal scripts
for quick analysis.

overwrites



Gwaihir video example

External users first approach to BCDI.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Pt(111): structures appear under 80 mbar of O2
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Reflectivity measurements indicate the presence of a 14 Å thick layer.



Pt(111): structures appear under 80 mbar of O2
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Pt(111): reflectivity during ammonia oxidation
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10 mbar NH3 + 80 mbar O2, sub = 2.80 Å
10 mbar NH3 + 5 mbar O2, sub = 1.24 Å
10 mbar NH3, sub = 1.01 Å

High roughness under oxygen, and important O2 / NH3 ratios.

Low roughness under low O2 / NH3 ratios, and ammonia.



Pt(111): reflectivity during ammonia oxidation
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Pt(111): crystal truncation rods
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Pt(111): crystal truncation rods
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Pt(111): x-ray photoelectron spectroscopy
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Pt(111): x-ray photoelectron spectroscopy
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Pt(111): x-ray photoelectron spectroscopy

Partial pressures (mbar)
Ar 1 0 0 0 0 1 0
NH3 0 0 1.1 1.1 1.1 0 0
O2 0 8.8 8.8 0.55 0 0 0.55

Gas signals (decreasing Ar O2 O2, H2O, NO H2O, NH3 H2, NH3 Ar O2
pressure order) NH3, N2, N2O N2, H2 N2

N 1s: peak positions No data No peak 402.6 eV 404.1 eV 405.3 eV 400.4 eV No peak
399.8 eV 400.8 eV 398.4 eV
397.5 eV 398.4 eV

Attributed surface species Not indexed N2,g N2,g NH3,a
NH3,a NH3,g NHx ,a
Na NHx ,a

O 1s: peak positions 532.4 eV 538.2 eV 538.5 eV 534.0 eV 532.4 eV 534.0 eV 538.3 eV
537.1 eV 537.5 eV 532.0 eV 532.4 eV 537.2 eV
531.4 eV 534.0 eV 531.4 eV
529.7 eV 529.7 eV

Attributed surface species H2Oa O2,g O2,g H2Og H2Oa H2Og O2,g
O2,g O2,g H2Oa H2Oa O2,g
OHa H2Og OHa
Oa Oa

Indexing of peaks measured during ammonia oxidation of the Pt(111) surface.



Pt(111): x-ray photoelectron spectroscopy
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Pt(100): structures appear under 80 mbar of O2

Argon NH3 O2
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Partial pressures during reaction
cycle.

In experimental order.

Bulk Pt3O4 is formed epitaxied on
the Pt(100) surface.
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Pt(100): reaction conditions, O2 / NH3 : 8

Argon NH3 O2
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The addition of NH3 removes the
shifted peaks.
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Peaks linked to Pt3O4 are still visible.

The heater has failed during the reacting conditions.
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Pt(100): reaction conditions, O2 / NH3 : 8
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Pt(100): structures appear under 80 mbar of O2

Argon NH3 O2
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cycle.

In experimental order.

The sample was cleaned and put
again under oxygen atmosphere.
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Similar in-plane signals are observed!



Pt(100): structures appear under 80 mbar of O2
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Pt(100): reaction conditions, O2 / NH3 : 8

Argon NH3 O2
(mbar) (mbar) (mbar)
500 0 0
420 0 80
410 10 80
485 10 5
490 10 0
500 0 0
495 0 5

Partial pressures during reaction
cycle.

In experimental order.

(10 × 10) reconstructions observed.

Reaction conditions favour NO .
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Pt(100): reaction conditions, O2 / NH3 : 0.5

Argon NH3 O2
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Partial pressures during reaction
cycle.
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Lowering O2 pressure to conditions
favoring N2 .
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5 mbar O2 + 10 mbar NH3
[H, K] = [0, -1.2]
[H, K] = [0.6, -1.03]

→ Pt(100)-Hex reconstruction.

Pt(100)-Hex is a monolayer, responsible for N2
selectivity?



Pt(100): crystal truncation rods
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Important roughness and strain evolutions are measured!



Pt(100): Pt(100)-(2 × 2) bulk Pt3O4

Pt3O4 unit cell

Pt(100) unit cell

Pt(100): Pt at z={0, -1}

Pt(100): Pt at z=-0.5

Pt3O4 : Pt at z=0.5



Pt(100): x-ray photoelectron spectroscopy

69.570.070.571.071.572.072.573.0
Binding energy (eV)
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70.5 eV

   Oa
71.4 eV

  NHx, a
71.6 eV

   Oa 71.8 eV

Pt(100), Pt 4f7/2, Ephoton=550 eV
Partial pressures in reactor

1) Ar: 1 mbar

2) O2: 8.8 mbar

3) O2: 8.8 mbar
    NH3: 1.1 mbar

4) O2: 0.55 mbar
    NH3: 1.1 mbar

5) NH3: 1.1 mbar

6) O2: 0.55 mbar

7) Ar: 1 mbar

    H2Oa



Pt(100): x-ray photoelectron spectroscopy
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Pt(100): x-ray photoelectron spectroscopy

Partial pressures (mbar)
Ar 1 0 0 0 0 0 1
NH3 0 0 1.1 1.1 1.1 0 0
O2 0 8.8 8.8 0.55 0 0.55 0

Gas presence (decreasing Ar O2 O2, H2O, NO H2O, NH3 H2, NH3 O2 Ar
pressure order) NH3, N2, N2O N2, H2 N2

N 1s: peak positions 403.6 eV No peak 404.3 eV 404.3 eV 404.9 eV No peak No peak
400.0 eV 400.6 eV

Attributed surface species Not assigned N2,g & NOg N2,g N2,g
Na NHx ,a

O 1s: peak positions 531.6 eV 538.3 eV 538.4 eV 534.3 eV 532.4 eV 538.3 eV 532 eV
537.2 eV 537.3 eV 532.1 eV 537.2 eV
529.7 eV 533.7 eV 531.4 eV

529.7 eV 530.6 eV
529.7 eV

Attributed surface species H2Oa O2,g O2,g H2Og H2Oa O2,g H2Oa
O2,g O2,g H2Oa O2,g
Oa H2Og Oa

Oa Oa
Oa

Indexing of peaks measured during ammonia oxidation of the Pt(100) surface.



Pt(100): x-ray photoelectron spectroscopy
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a) Pt(100), O 1s, Ephoton=700 eV
Partial pressures in reactor

1) Ar: 1 mbar

2) O2: 8.8 mbar

3) O2: 8.8 mbar
    NH3: 1.1 mbar

4) O2: 0.55 mbar
    NH3: 1.1 mbar

5) NH3: 1.1 mbar

6) O2: 0.55 mbar

7) Ar: 1 mbar
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Binding energy (eV)
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b) Pt(100), N 1s, Ephoton=700 eV



Pt(111) & Pt(100): RGA signals during SXRD
& XPS
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