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Adapted from Environmental Protection Agency (2023).

® Nitrogen fertiliser use expected to keep increasing in the southern hemisphere.

® N,O emissions come also directly from nitric acid manufacture.
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4NH;+50,-6 + 4 NO 2. Producing HNO3 from NO .
?
Stage 2 Why HNO3 7
2NO + 05 — 2NOs ® Fertiliser synthesis: ~ 60 million tonnes/year.

3NO2 + — 2 HNOs + NO e TNT, mining industry.

Fertiliser synthesis Other applications for ammonia oxidation:

HNO3 + NH3s — NH4NO3 ® "Slip reaction", remove undesired NH; from
industrial exhaust.

® Environmental reasons (NHsis a major air
pollutant.)
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Ostwald process and ammonia oxidation

Stage 1
4 NH;3+30,— 6 + 2 N»
4 NHs 4+ 40— 6 + 2 N>O
4NH;4+500,—6 + 4 NO

Application — selective catalytic reaction tuned towards
a specific product.

Selectivity — temperature, pressure, reactant ratio, type
of catalyst.
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Ostwald process: industrial conditions
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NO selectivity increases with temperature,
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Figures adapted from literature review!.
NO selectivity increases with temperature, and O / NHs partial pressure ratio.

— navigate between conditions to understand the production of NO or N».

!Hatscher et al. Handbook of Heterogeneous Catalysis: Ammonia Oxidation, John Wiley & Sons, Ltd, 2008
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Ostwald process: industrial conditions

SEM images of Pt-Rh reconstructed gauzes with cauliflower patterns after
use in industry?.

2Bergene et al. Surface Areas of Pt—Rh Catalyst Gauzes Used for Ammonia Oxidation, JoC, 1996
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Ostwald process: industrial conditions

SEM images of Pt-Rh reconstructed gauzes with cauliflower patterns after
use in industry?.

® Industrial catalysts undergo an ® Final deactivation process linked to
activation process. oxides reported.

® Roughening linked to oxides, and ® Rhodium increases NO selectivity,
high temperature gradient areas. and limits the loss of platinum.

2Bergene et al. Surface Areas of Pt—Rh Catalyst Gauzes Used for Ammonia Oxidation, JoC, 1996
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The material and pressure gap

"A long standing conundrum in the catalysis community emerged at the
interface between surface science and heterogeneous catalysis, better
known as the pressure and material gap."

Nature Catalysis editorial, 2018.
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Near-ambient pressure synchrotron techniques

Technique Surface X-ray
Diffraction (SXRD)

Sample Pt(111) and Pt(100)
single crystals
and Pt particles

Information | Surface structure,
roughness, relaxation &
crystallographic phases

SixS (SOLEIL) \

Beamline

1
H(rlu.)

Introduction 10



Near-ambient pressure synchrotron techniques
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Near-ambient pressure synchrotron techniques

Technique Surface X-ray Bragg Coherent X-ray Photoelectron

Diffraction (SXRD) Diffraction Imaging Spectroscopy (XPS)
(BCDI)

Sample Pt(111) and Pt(100) Isolated Pt(111) and Pt(100)
single crystals Pt particles single crystals
and Pt particles

Information | Surface structure, Shape, 3D displacement | Surface species presence,
roughness, relaxation & | and strain arrays quantity & oxidation
crystallographic phases | of unique object state

Beamline ‘ SixS (SOLEIL) ‘ SixS (SOLEIL) ‘ B-07 (Diamond Light Source)
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Sample environment at SixS

Multi Environment Diffractometer (MED), experimental
end station at SixS (hard x-ray).
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Sample environment at SixS

Multi Environment Diffractometer (MED), experimental
end station at SixS (hard x-ray).

— Study ammonia oxidation.

Introduction

XCAT reactor cell and dome
for NAP experiments.

® Gas panel with mass flow
controllers (Argon, NHs,
05, ...).

® Sample heater (up to
600 °C at 1bar).
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Conditions

Atmosphere | 300°C | 500°C | 600°C

Argon (inert gas) |  Catalyst state outside reaction (reference).
1 NHs3 | NH3 adsorption.

0.5 024+ 1 NH3

Influence of O, / NHs partial pressure ratio as a

1 0>+ 1 NH; function of the temperature and vice-versa.

202+ 1 NHs
8 024 1 NHs
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Product pressure evolution similar to reported literature behaviour!
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Heterogeneous catalysis is a surface process

® Pt particles have a faceted shape.
® Reaction steps happen on the catalyst surface.

® Surface atoms of different facets have different environments (e.g.
coordination number).

® Explore correlation between specific facets and reaction products.

Facets
- (111}
{110}

{100}
- {311}
we Interface

—  Property of diffraction: important signal perpendicular to those facets!
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Collective behaviour of Pt particles
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Collective behaviour of Pt particles
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Collective behaviour of Pt particles
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Collective behaviour of Pt particles: 600 °C

a) (111) in (gx G2) plane

b) Rotated by 30°

c) Rotated by 60°
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Collective behaviour of Pt particles: 600 °C

a) (111)in (gx, G,) plane b) Rotated by 30° c) Rotated by 60°
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Collective behaviour of Pt particles: 600 °C

Intensity (a.u.)
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Collective behaviour of Pt particles:
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Collective behaviour of Pt particles: 600 °C

a) (111)in (gx, G,) plane b) Rotated by 30° c) Rotated by 60°
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Collective behaviour of Pt particles: 600 °C

a) (111)in (gx, G,) plane b) Rotated by 30° c) Rotated by 60°

3
s
2
§ (0i1)
€
(is)
0.85 0.90 0.95 0.85 0.90 0.95
q: (A7) q: (A71)
== Argon === 0.5 02:1NH; == 2 0z:1NH;
—— 002:1NH3 —— 102:1NH3 —802:1NH3

Reshaping associated to increasing O2 / NHj ratio, linked to NO production?
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Pt particles: summary

® |nitial shape consists mostly of {100}, {110}, {111}, and {113} facets.
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Stable particle shape below 600 °C.

Global re-shaping initiated at 600 °C during reaction.

® Continues with increasing oxygen pressure, linked to increased NO production?

—  Prevalence of {111} and {100} facets over {113} and {110} facets.
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Pt particles: summary

Initial shape consists mostly of {100}, {110}, {111}, and {113} facets.

Stable particle shape below 600 °C.

Global re-shaping initiated at 600 °C during reaction.

® Continues with increasing oxygen pressure, linked to increased NO production?

—  Prevalence of {111} and {100} facets over {113} and {110} facets.

How to obtain more detailed information about single particles?

|. Probing the average structure with surface x-ray diffraction 18
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behaviour
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change
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Single
particle

Bulk and
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BCDI
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BCDI at SixS

® Complementary with Surface X-Ray Diffraction.
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BCDI at SixS

® Complementary with Surface X-Ray Diffraction.

® Same reactor cell allowing NAP operando experiments.

Reactor cell and dome.
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BCDI at SixS

® Complementary with Surface X-Ray Diffraction.

® Same reactor cell allowing NAP operando experiments.

f Detector
A
I Reactor cell and dome.
Beam Fresnel Order
stop zone- selecting

plates aperture

Coherence optical elements used at SixS (8.5 keV).
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BCDI at SixS

® Complementary with Surface X-Ray Diffraction.

® Same reactor cell allowing NAP operando experiments.

f Detector
A
Beam Fresnel Order
stop zone- selecting

plates aperture

Coherence optical elements used at SixS (8.5 keV).

Optical elements.

Beam stop | FZP OSA Beam
80 um 300um | 70pum | = 1pum

Diameter
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Patterned sample used for BCDI

® (0001)-oriented sapphire (a-Al>0O3)
substrate.

® (111)-oriented particles.
® 24h annealed in air at 1100 °C.
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Patterned sample used for BCDI

® (0001)-oriented sapphire (a-Al>0O3)
substrate.

® (111)-oriented particles.
® 24h annealed in air at 1100 °C.

® Patterned sample.

1415|1617

Mask applied during sample preparation.
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Patterned sample used for BCDI

® (0001)-oriented sapphire (a-Al>0O3)
substrate.

® (111)-oriented particles.
® 24h annealed in air at 1100 °C.

® Patterned sample.

Sample holder (left) and dome (right).

1415|1617

100
Hm

Mask applied during sample preparation.
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Patterned sample used for BCDI

® (0001)-oriented sapphire (a-Al>0O3)
substrate.

® (111)-oriented particles.
® 24h annealed in air at 1100 °C.

® Patterned sample.

1415|1617

100
Hm

Microscope image (left).
Sample map performed in Bragg condition in
Mask applied during sample preparation. ~5 min (right).
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BCDI data collection

Multi Environment Diffractometer (MED),
experimental end station at SixS.

1(§) o< |F()I?
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BCDI data collection

Multi Environment Diffractometer (MED),
experimental end station at SixS.

() o |F(@)”
F@)= Y (@™

j

II. Single particle structural study with Bragg coherent diffraction imaging
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Measuring 3D diffraction patterns at SixS

Y i ! 1‘ e Y ]
Multi Environment Diffractometer (MED),

experimental end station at SixS.

() o |F(@)”
F@)= Y (@™

- Coherent fringes visible in multiple directions
J

in 3D diffraction pattern.
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Phase retrieval

T Jiiglee

A
Support Alq) = ilg)
Lot | *
Coherent Bragg peak. Phase retrieval with PyNX using iterative algorithms>.

3Favre-Nicolin et al. Fast computation of scattering maps of nanostructures using graphical processing units,
JAC, 2011
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Phase retrieval

200 4

150 4

300

200

100

Coherent Bragg peak.

0

] 200 0 200

Phase retrieval with PyNX using iterative algorithms®.

3Favre-Nicolin et al. Fast computation of scattering maps of nanostructures using graphical processing units,
JAC, 2011
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Phase retrieval

225
2
0
175 - |
-2
300
200
100
Coherent Bragg peak.
0
0 200 0
3

Phase retrieval with PyNX using iterative algorithms>.

3Favre-Nicolin et al. Fast computation of scattering maps of nanostructures using graphical processing units,
JAC, 2011
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Phase retrieval

225
2
0
175 |
-2
300
200
100
Coherent Bragg peak.
0
0 200 0
Phase (rad)
I Phase retrieval with PyNX using iterative algorithms®.

—0.00

[7025
0.50

Complex object: p(?)e"?;"k"ﬁ(r)

i,
o~
!

Reconstructed particle.

3Favre-Nicolin et al. Fast computation of scattering maps of nanostructures using graphical processing units,
JAC, 2011
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Phase retrieval

225
2
0
175 |
-2
300
200
100
Coherent Bragg peak.
0
0 200 0
Phase (rad)
I Phase retrieval with PyNX using iterative algorithms®.

—0.00

LB Complex object: p(?)e"?;"k"ﬁ(r)

i,
o~
!

Reconstructed particle. Phase o projection of displacement field!

3Favre-Nicolin et al. Fast computation of scattering maps of nanostructures using graphical processing units,
JAC, 2011
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BCDI data analysis workflow

Pre-processing - bcdi  Phase refrieval - ANX | Po

Data loading P [Initialise support 4 ' Filtering (opt)
l 4

Flatfield correction
/Normalization

)
: Interpolation info
B Iterative orthonormal frame
Binning (opt.)
3
i
|

1
1
1

phase retrieval
: Phase unwrapping
1

Save solution |

Refraction

correction
Cropping/ Solution filtering 3
Centering

Phase ramp/
Offset correction

Inferpolation (opt.)

Decomposition
into modes

Interactive masking

Filtering (opt.)

Displacement

Strain

Flow chart of the main steps in the BCDI
data analysis workflow.

4Simonne et al. Gwaihir: Jupyter Notebook graphical user interface for Bragg coherent diffraction imaging, JAC,
2022
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BCDI data analysis workflow

Phaso ot | posiproces: | Handiodai | Facels | Reaame

Gwaihir Scanawar | wscor | seup | Prepocess | Gomeet | toge
Pre-processing - bedj  Phase refrieval - AYNX | Post-processing - Load at s and sl nthe GUI

w_mainn_Ubest

Data loading P [Initialise support 4 ' Filtering (opt) Dats ke | o
3 b it [——— . .
Flatfield correction : 1 Interpolation info : o
/Normalization Iterative 1 orthonormal frame placement et ap 8005 o ocae Becen e
phase retrieval 0 0 111 0 ST Lt ooa 00008 suportn |
Binning (opt.) : Phase unwrapping Load ata Gl Reloaa e 2000 Pasices Do comvst
3 Save wlotion LI Gusciwppnt  Smonspon  Dipy.prgimage  Delssekceaies
Inferpolation (opt.) = Refraction Pekm sy bt [ erp v
correction Contour. 539
Cropping/ Solution filtering 3 - Rote
Centering Ph §
ase ramp/ oarkc e =)
Offset correction cors (i ]
Inferactive masking Decomposition Range: ( me—)0.00 - 1078
into modes . Corpianes
= Displacement e w
Filtering (opt.) —=— . o
Strain piane Uz 10
. . ocesso: [
Flow chart of the main steps in the BCDI
data analysis workflow. Interactive widgets for data analysis.

4Simonne et al. Gwaihir: Jupyter Notebook graphical user interface for Bragg coherent diffraction imaging, JAC,

2022
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BCDI data analysis workflow

Gwaihir

Scan oetai | Deecior | seup Preprocess | Comet | Logs Phaso ot | posiproces: | Handiodai | Facels | Reaame

Pre-processing - bcdi  Phase refrieval - A/NX | Post-processing -

Loads data files and displays itin the GUI

Data loading P [Initialise support 4 ' Filtering (opt) v
¥ 1 +
Flatfield correction : 1 Interpolation info ; .
/Normalization lterative 1 orthonormal frame lacemen. ot gp 0005 s acnen o
phase retrieval 0 0 111 0 ST
Binning (opt.) : Phase unwrapping Load ata Gl Reloaa e 2000 Pasices Do craatesupport
{ Save solution I Gusciwppnt  Smonspon  Dipy.prgimage  Delssekceaies
Inferpolation (opt.) Refraction Pikan amay toload: | amp v
; correction Contour. 539
Cropping/ Solution filtering 3 - Rote
Centering
Phase ramp/ oac sox s
Offset correction cotors: [t v
Interactive maskin: Decomposition  _|
9 into modes . v
Displacement

Filtering (opt.) —=—

Strain

Flow chart of the main steps in the BCDI
data analysis workflow.

Interactive widgets for data analysis.

O Open access*: GitHub.com/DSimonne/Gwaihir#welcome

4Simonne et al. Gwaihir: Jupyter Notebook graphical user interface for Bragg coherent diffraction imaging, JAC,
2022
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Facets on Pt particles

Small particle: @ ~ 350nm. Large particle: & ~ 800 nm.

(i
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Small particle: @ ~ 350nm. Large particle: & ~ 800 nm.
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® Difference in size, shape, and in the type of facets exhibited.
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Facets on Pt particles

Small particle: @ ~ 350nm. Large particle: & ~ 800 nm.

® Difference in size, shape, and in the type of facets exhibited.

® Most of the facets have low Miller indices, {100}, {110}, {111}.

® The smaller particle has more 'open’ facets, such as {113}.

II. Single particle structural study with Bragg coherent diffraction imaging 28



Operando BCDI: small particle (350 nm), 300°C

Strain (%)
001 -0.008 -0.006 -0.004 -0002 0. 0002 0004 0006 0008 001

/¥4 4 g ﬁ 14 \g
Y & YooX <X Z e <X o o< X
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Operando BCDI: small particle (350 nm), 300°C

Strain (%)
001 -0.008 -0.006 -0.004 -0002 0. 0002 0004 0006 0008 001

("4 1”4 I\ ﬁ 74 g
aY X Yo X <X Z 4 <X o o< X

ceqoes

Substrate
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Operando BCDI: small particle (350 nm), 300°C

Strain (%)
001 0008 -0006 0,004 0002 0. 0002 0004 0,006 0008 001
—— ! : : & D ——
4 4 g 4 >4 g
ay X Yoo Xz < <X o oz X
Argon

O2/NH3: 0.5

Strain (%)

001 -0.008 0006 0004 0002 0. 0002 0004 0006 0.008 001

—— ! : : & b ——

z 4 g 4 Z g

Y X Y oX Xz < Y <X e < X

02/ NH3: 1
O2/ NH;: 2
O,/ NHs: 8

(VN R
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Pt particles: summary

How to obtain information about single particles? — Use BCDI!

II. Single particle structural study with Bragg coherent diffraction imaging 33



Pt particles: summary

How to obtain information about single particles? — Use BCDI!

® Different evolution for particles of different size, shape, and initial strain state.
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Pt particles: summary

How to obtain information about single particles? — Use BCDI!

® Different evolution for particles of different size, shape, and initial strain state.

® Structural changes at 400 °C above O> / NH3 : 1 on small particle, conditions favouring

NO.

II. Single particle structural study with Bragg coherent diffraction imaging 33



Pt particles: summary

How to obtain information about single particles? — Use BCDI!

® Different evolution for particles of different size, shape, and initial strain state.
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® | arge particle reacts only to ammonia.
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Pt particles: summary

How to obtain information about single particles? — Use BCDI!

Different evolution for particles of different size, shape, and initial strain state.

® Structural changes at 400 °C above O> / NH3 : 1 on small particle, conditions favouring
NO.

® | arge particle reacts only to ammonia.

Single and collective behaviours are different.
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Pt particles: summary

How to obtain information about single particles? — Use BCDI!

Different evolution for particles of different size, shape, and initial strain state.

® Structural changes at 400 °C above O> / NH3 : 1 on small particle, conditions favouring
NO.

® | arge particle reacts only to ammonia.

Single and collective behaviours are different.

How to obtain information about specific facets?

II. Single particle structural study with Bragg coherent diffraction imaging 33



Group of Single
particles particle
Shape
change
Average Bulk and
behaviour Facet strain

Understand
catalyst

structure
Product Facet

selectivity structure

SXRD BCDI

Single
crystals

Specific structure
Large surface area

SXRD & XPS

I1l. Pt single crystals during ammonia oxidation
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Conditions

Atmosphere (450°C) | Interest
Argon (inert gas) | Catalyst state without reactants (unactive).
High O, pressure | Surface oxidation
8 024+ 1 NH3 Influence of (O / NHs)
0.5 0o+ 1 NH; partial pressure ratio
NH;3 Ammonia adsorption

Surface oxidation

Argon (inert gas) | Probing cycle reproducibility
Low O pressure |

Large reactor used at SixS (a), and single crystal sample (b).
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Pt(111) surface.

1
H (r.l.u.)

Pt(111) bulk-terminated structure reciprocal space
in-plane map (Argon).
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Argon 0
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

IIl. Pt single crystals during ammonia oxidation

1
H (r.l.u.)

Reciprocal space map under 80 mbar of oxygen.
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Argon 0
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

Rotated lattices: red and gray
diamonds.

IIl. Pt single crystals during ammonia oxidation

1
H (r.l.u.)

Reciprocal space map under 80 mbar of oxygen.
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Pt(111): structures appear under 80 mbar of O,

Argon | NH3 07}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

Rotated lattices: red and gray

IIl. Pt single crystals during ammonia oxidation

diamonds.

K (r.l.u.)

H (r.l.u.)

Reciprocal space map under 80 mbar of oxygen.

9h30 after oxygen exposure.

37



Argon o))
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

Rotated lattices: red and gray
diamonds.

Surface oxide: black diamond.

IIl. Pt single crystals during ammonia oxidation

K (r.l.u.)

H (r.l.u.)

Reciprocal space map under 80 mbar of oxygen.

9h30 after oxygen exposure.
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Pt(111): reaction conditions, O, / NH3 : 8

Argon | NH3 07}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

The addition of ammonia removes

all the signals.

IIl. Pt single crystals during ammonia oxidation

1
H(r.lL.u.)
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Pt(111): reaction conditions, Oy / NH3 : 0.5

Argon | NH3 07}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

IIl. Pt single crystals during ammonia oxidation

1
H(r.lL.u.)
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Argon 02
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

1
H (r.l.u.)

IIl. Pt single crystals during ammonia oxidation



Pt(111): back to inert atmosphere

Argon | NH3 07}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

The initial surface is reproducible.

IIl. Pt single crystals during ammonia oxidation

K (r.l.u.)

1
H(r.lL.u.)
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Pt(111): low oxygen pressure (5 mbar)

Argon | NH3 0O,
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

—  Rotated lattices visible from
the start.

K (rlu)

IIl. Pt single crystals during ammonia oxidation

5t = [0h00, 0h34]
'

0
H(rlu)

T
1
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Pt(111): low oxygen pressure (5 mbar)

Argon | NH3 07}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

—  Rotated lattices visible from

the start.

IIl. Pt single crystals during ammonia oxidation

a)‘;‘

5t = [0h00, 0h34]

b))/

0
H(rlu)

ot = [0h41, 4h03]

0
H(rlu)
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Pt(111): low oxygen pressure (5 mbar)

Argon | NH3 07}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

—  Rotated lattices visible from
the start.

K(rluw)

IIl. Pt single crystals during ammonia oxidation

a)/

St = [0h0O, 0H34]

b))/

St = [0h41, 4h03]

&t = [14h35, 15h57]

0
H(rlu)

0
H(rlu)
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a)

Argon NHs (o}

(mbar) | (mbar) | (mbar) N

500 0 0 3

420 0 80 s

410 10 80

485 10 5

490 10 0 ]

500 O 0 ot = [0h00, 0h34]
495 0 5

Partial pressures during reaction
cycle. 14
In experimental order.

—  Rotated lattices visible from
the start.

—  Surface oxides appears later
under lower oxygen pressure!

8t = [14h35, 15h57]

0 1 0
H(rlu) H (rlu)

42
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Understanding CTR intensity

[H, KI =12, 0]

102

Structure factor

10°

0.5 1.0 15 2.0 25 3.0 35
L(r.lu)

I1l. Pt single crystals during ammonia oxidation

High
roughness

Flat
Surface
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Understanding CTR intensity

[H, KI =12, 0]

102

Structure factor

10°

102

10t

Structure factor

10°

0.5 1.0 1.5 2.0 2.5 3.0 35
L(r.L.u.)

I1l. Pt single crystals during ammonia oxidation

High
roughness

Flat
Surface

Tensile
strain

No strain

Compressive
strain
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Pt(111): crystal truncation rods

[H Kl =[1,1]
[
103 4
o Partial pressures (total pressure = 500 mbar)
.
"8 , o O Ar
a8 10 1o R .
g O°o o° ©
o

g oo 000 o
= ©6000000009° Ooo
9 101 4 =

10° T T T T

05 1.0 1:5 210 25 3.0 35 40
L(rlu.)

I1l. Pt single crystals during ammonia oxidation
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Pt(111): crystal truncation rods

[H Kl =[1,1]
[
103 4 5
) Partial pressures (total pressure = 500 mbar)
.§ ) 38 O Ar
E 10% 49 o o O 03: 80 mbar
v % e° %
2 O, o° <)
5 Ooeo O°°° 88
& 10 9088886869 8898
10° T T T T

05 1.0 1:5 210 25 3.0 35 40
L(rlu.)
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Pt(111): crystal truncation rods

[H Kl =[1,1]
103 4 ?
5}
8 Partial pressures (total pressure = 500 mbar)

§ 8 O Ar
o 102 1o ° ° O 0: 80 mbar
P % & O Oz 80 mbar, NH3: 10 mbar
E %, 9
: 8880000000 %,
& 101 ] 88986086 8984

10° T T T T

05 1.0 1:5 210 25 3.0 35 40
L(rlu.)
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Pt(111): crystal truncation rods

[H Kl =[1,1]
[
103 4 °
° Partial pressures (total pressure = 500 mbar)
s g B O Ar
g 10% 44 8 O 03: 80 mbar
S ® 80 89 O 02: 80 mbar, NH3: 10 mbar
] % o3 8 (O 0y: 5 mbar, NHz: 10 mbar
Pl Mgt "
=4
5 0] 68888800 §§§l
10° T T T T

05 10 15 20 25 3.0 35 40
L(rlu.)

—  Roughness changes linked to oxygen presence are clearly visible.
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Pt(111): crystal truncation rods

[H Kl =[1,1]
[
3
10 °
° Partial pressures (total pressure = 500 mbar)

§ 8 g O Ar
o 102 .e 8 O 0: 80 mbar
S e go 8 O 02: 80 mbar, NH3: 10 mbar
§ 0 eggg gs (O 02: 5 mbar, NHz: 10 mbar
o
S Seg 0% 8 O NH3: 10 mbar
g | eeessenest "

10° T T T T T T T T

05 10 15 20 25 3.0 35 40
L(rlu.)

—  Roughness changes linked to oxygen presence are clearly visible.
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Pt(111): crystal truncation rods

[H Kl =[1,1]
[
3
10 e
° Partial pressures (total pressure = 500 mbar)

§ 8 g O Ar
< 10? £l 8 O 03: 80 mbar
S ‘ go 89 O 02: 80 mbar, NH3: 10 mbar
§ eggg gag (O 0z: 5 mbar, NH3: 10 mbar
S Qg 009 O NH3: 10 mbar
=} 3
g 10t 4 ggggggg g@g O Ar (after)

10° T T T T T T T T

05 10 15 20 25 3.0 35 40
L(rlu.)

—  Roughness changes linked to oxygen presence are clearly visible.
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Pt(111): crystal truncation rods

[H KI=11,1]

103 4
e

8 Partial pressures (total pressure = 500 mbar)
g Ar

0O3: 80 mbar

0,: 80 mbar, NH3: 10 mbar

03: 5 mbar, NH3: 10 mbar

NHs3: 10 mbar

Ar (after)

0,: 5 mbar

-

o
.
L

Structure factor

o
il
&
&
&b
)

@

kY
e
&5
0D

an
OO00000O

10° T T T T T T
05 10 15 20 25 3.0 35 40

L(rlu.)

—  Roughness changes linked to oxygen presence are clearly visible.
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Pt(111): summary

O (mbar)  NHs (mbar) | Pt(111)

80 0

Two rotated hexagonal lattices,
Surface oxide after 9 h30 min
Increased surface roughness

IIl. Pt single crystals during ammonia oxidation
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Pt(111): summary

O (mbar)  NHs (mbar) | Pt(111)

80 0 Two rotated hexagonal lattices,
Surface oxide after 9 h30 min
Increased surface roughness

80 10 | Removal of all signals
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Pt(111): summary

O (mbar)  NHs (mbar) | Pt(111)

80 0 Two rotated hexagonal lattices,
Surface oxide after 9 h30 min
Increased surface roughness

80 10 | Removal of all signals

5 10 | Decreased surface roughness

IIl. Pt single crystals during ammonia oxidation 45



Pt(111): summary

O2 (mbar)  NH3 (mbar)

Pt(111)

80 0 Two rotated hexagonal lattices,
Surface oxide after 9 h30 min
Increased surface roughness

80 10 Removal of all signals

5 10 Decreased surface roughness

0 10 Weak strain changes

IIl. Pt single crystals during ammonia oxidation

45



Pt(111): summary

but with lower roughness

O (mbar)  NHs (mbar) | Pt(111)

80 0 Two rotated hexagonal lattices,
Surface oxide after 9 h30 min
Increased surface roughness

80 10 | Removal of all signals

5 10 | Decreased surface roughness

0 10 | Weak strain changes

0 0 ‘ Return to clean surface

IIl. Pt single crystals during ammonia oxidation

45



Pt(111): summary

O (mbar)  NHs (mbar) | Pt(111)

80 0 Two rotated hexagonal lattices,
Surface oxide after 9 h30 min
Increased surface roughness

80 10 | Removal of all signals

5 10 | Decreased surface roughness

0 10 | Weak strain changes

0 0 Return to clean surface
but with lower roughness

5 0 ‘ Rotated lattices also visible.

Surface oxide measured later.

IIl. Pt single crystals during ammonia oxidation
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Pt(111): summary

O2 (mbar)  NH3 (mbar)

Pt(111)

80 0 Two rotated hexagonal lattices,
Surface oxide after 9 h30 min
Increased surface roughness

80 10 | Removal of all signals

5 10 | Decreased surface roughness

0 10 | Weak strain changes

0 0 Return to clean surface
but with lower roughness

5 0 ‘ Rotated lattices also visible.

Surface oxide measured later.

Does the Pt(100) surface exhibit the same behaviour?

IIl. Pt single crystals during ammonia oxidation
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-
Atoms on the Pt(100) surface 00 05 1.0 15 20
follow a square arrangement. H(r.l.u.)

Pt(100) bulk-terminated structure reciprocal space
in-plane map (Argon).

15
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Argon NHs (o}

(mbar) | (mbar) | (mbar)

500 0 0

420 0 80 -
410 10 80 3
485 10 5 =
490 10 0 ¥
500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

“H(rLu.)

IIl. Pt single crystals during ammonia oxidation



Argon NHs (o}

(mbar) | (mbar) | (mbar)

500 0 0

420 0 80 -
410 10 80 3
485 10 5 =
490 10 0 ¥
500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

“H(rLu.)

Two family of peaks, one shifted
from the other.

IIl. Pt single crystals during ammonia oxidation



Argon NHs (o}

(mbar) | (mbar) | (mbar)

500 0 0

420 0 80 -
410 10 80 3
485 10 5 =
490 10 0 ¥
500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

“H(rLu.)

Two family of peaks, one shifted
from the other.

IIl. Pt single crystals during ammonia oxidation



Pt(100): structures appear under 80 mbar of O,

Argon | NH3 0O,
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

Two family of peaks, one shifted
from the other.

Pt(100)-(2 x 2) bulk Pt304is
formed!

IIl. Pt single crystals during ammonia oxidation

a) SSR at [H, K] = [0.5, -1]

%

Structure factor

b) SSR at [H, K] = [1, -1.5]

Structure factor

R,

O Experimental

data

— Fitting

result

© Experimental

data

— Fitting

result
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Argon o))

(mbar) | (mbar) | (mbar)

500 0 0

420 0 80 -
410 10 80 3
485 10 5 =
490 10 0 X
500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

IIl. Pt single crystals during ammonia oxidation 48



Argon o))
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

Reaction conditions favour NO .

IIl. Pt single crystals during ammonia oxidation

K (r.l.u.)

0.0

_05,

—1.01

00 05 10 15 20
H (r.l.u.)

(10 x 10) reconstructions observed.
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Argon o))
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

Reaction conditions favour NO .

Two family of peaks, one shifted
from the other.

IIl. Pt single crystals during ammonia oxidation

K (r.l.u.)

0.0

_05,

—1.01

00 05 10 15 20
H (r.l.u.)

(10 x 10) reconstructions observed.
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Argon o))
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

IIl. Pt single crystals during ammonia oxidation

~-0.5
S
s _1.0
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Argon o))
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

Lowering O pressure to conditions

IIl. Pt single crystals during ammonia oxidation

favoring N> .

~-0.5
S
s _1.0

49



Argon o))
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

Lowering O pressure to conditions

IIl. Pt single crystals during ammonia oxidation

favoring N> .

~-0.5
S
s _1.0

4

—  Pt(100)-Hex reconstruction.
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Pt(100): only ammonia

Argon | NH3 07}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

IIl. Pt single crystals during ammonia oxidation

K (r.l.u.)

0.5

0.0

—0.5

-1.04

-1.5

—2.0] -

1
H (r.l.u.)




Pt(100): only ammonia

Argon | NH3 07}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

IIl. Pt single crystals during ammonia oxidation

K (r.l.u.)

0.5

0.0

—0.5

-1.04

-1.5

—2.0] -

1
H (r.l.u.)




Pt(100): only ammonia

0.51

Argon | NH3 07}
(mbar) | (mbar) | (mbar) 0.0
500 0 0
420 0 80
410 10 80 ~—0.5]
485 10 5 2
490 10 0 < _10]
500 0 0 X
495 0 5

-1.5

Partial pressures during reaction
cycle. | e
In experimental order. -2.0 Q

1 2
H (r.l.u.)

Pt(100)-Hex reconstruction linked to catalytic reaction?

IIl. Pt single crystals during ammonia oxidation 50



Pt(100): back to inert atmosphere

Argon | NH3 07}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80

485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

The initial surface is reproducible.

IIl. Pt single crystals during ammonia oxidation

K (r.l.u.)

0.5

0.01

—0.51

—1.0/

-1.5

1
H (r.L.u.)

Removing the reagents brings back the Pt(100)
bulk-terminated structure.
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Argon NHs (o}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

IIl. Pt single crystals during ammonia oxidation



Argon NHs (o}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

Multiple new peaks appear!

IIl. Pt single crystals during ammonia oxidation



Argon NHs (o}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

Multiple new peaks appear! 1
H (r.l.u.)

Pt(100)-Hex reconstruction linked to catalytic reaction!

IIl. Pt single crystals during ammonia oxidation 52



Argon NHs (o}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

Multiple new peaks appear! 1
H (r.l.u.)

Pt(100)-Hex reconstruction linked to catalytic reaction!
Pt304 does not form at lower oxygen pressure!

IIl. Pt single crystals during ammonia oxidation 52



Argon 02
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

IIl. Pt single crystals during ammonia oxidation

0.25 050 0.75 1.00 1.25 1.50
H(r.l.u.)

12
11
10
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Argon 02
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

IIl. Pt single crystals during ammonia oxidation

0.25 050 0.75 1.00 1.25 1.50
H(r.l.u.)

Transient structures!

12
11
10
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Pt(100): crystal truncation rods

[H, Kl =10, 1]
103 4 °
° Partial pressures (total pressure = 500 mbar)
S O Ar
k] o o
< 102 4 o
O
v o o ° 4
= o o o
=} o ° o
¥ 10! 40° SR ° °
90000° o
oo
10° T T T T

05 10 15 20 25 30 35 4.0
L (rlu.)
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Pt(100): crystal truncation rods

[H, Kl =10, 1]
103 4 o
8 Partial pressures (total pressure = 500 mbar)
S o O Ar
o 102 4 8 g o 0,: 80 mb
& O 03: 80 mbar
] [}
5 R ° 8
frar) [~ o
g ° %0 8
ﬁ 10! Og Ooo o g O°
$%o o o o 3
po oOgSOooog° 9
[+
80
100 T T T T

I1l. Pt single crystals during ammonia oxidation 54



Pt(100): Pt304 contribution to Pt(100) CTR

Structure factor

Pt30, is at the source of intensity on the Pt(100) CTR!

10° [H, Kl =10, 1]
° o
102 °
o o [}
cPo o © %
Oo p O
o o
1 o % Od°o o °o
10+ 4 P s o & )
= %S g’ T
o0
100 T T T T T T T
00 05 1.0 15 20 25 30 35

L(r.l.u.)

—— O

Pt304 unit cell®.

5Seriani et al. Catalytic Oxidation Activity of Pt304 Surfaces and Thin Films, Phys. Chem. B, 2006
IIl. Pt single crystals during ammonia oxidation
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Pt(100): Pt304 contribution to Pt(100) CTR

[H, K] = [0, 1]

103

102 4

Structure factor

100 L+ : : : : : :

00 05 1.0 15 20 25 3.0 35
L(rlu)

Pt30, is at the source of intensity on the Pt(100) CTR!

—— O

Pt304 unit cell®.

5Seriani et al. Catalytic Oxidation Activity of Pt304 Surfaces and Thin Films, Phys. Chem. B, 2006

IIl. Pt single crystals during ammonia oxidation
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Pt(100): crystal truncation rods

[H, Kl =10, 1]
3 (<]
10 o
9 Partial pressures (total pressure = 500 mbar)
5] 8 Ar
S ) 8 8 o (@)
Q107 5 ° O 03: 80 mbar
o
o eg g 8 § O 03: 80 mbar, NH3: 10 mbar
2 8 8 o
S 8 o8 8 °
5 99 08 % .8 oo
2] 101 4 °°0 °o° o g
[
3° ©o88g0085 2o
°8
o
10° T T T T T T T T
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Pt(100): crystal truncation rods

[H, Kl =10, 1]
103 4 °
8
°g Partial pressures (total pressure = 500 mbar)
— [+
B e g ° O Ar
< 102 4 o O 03: 80 mbar
o 8 8 e 3 O 0,: 80 mbar, NH3: 10 mbar
—
> 8 °g O 0:5 mbar, NHz: 10 mbar
g 8 . 8
=] °§ c8o o §
s :>°9 080 %o 38 00
2] 101 4o [e3o] 8
Bo® ° °§§ 8 oo
°O gga o 8 o
8
o
100 T T T T
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Pt(100): crystal truncation rods

[H, KI=[0, 1]
10° 4 o
8
° Partial pressures (total pressure = 500 mbar)
s oa
o 8 ° O Ar
@ 107 5 8 O 03: 80 mbar
o 8 8 8 § O 03: 80 mbar, NH3: 10 mbar
L
2 g8 -8 o O  0y: 5 mbar, NH;: 10 mbar
O § o og g
5 gg ogo O NHs: 10 mbar
5o 50 TosBoooseoctd S
e "o gent s
o 0g85
0°%go8 Sgs
o
]
100 T T T T
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Pt(100): crystal truncation rods

[H, KI=[0, 1]
103 4 ;
o8 Partial pressures (total pressure = 500 mbar)
s o
o g ° O Ar
g 10+ 8 9 O  02: 80 mbar
o 8 8 8 § O 03: 80 mbar, NHs: 10 mbar
L
2 8 °g, ° O 0y: 5 mbar, NH3: 10 mbar
s 38§§ 080, o ;Q 8 O NHs: 10 mbar
& 101 LaBo 08:000080° "8 ‘8 O Ar (after)
10 'ggo o eg 08
°O gggaso 8 8
g
]
10° T T T T
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Pt(100): crystal truncation rods

[H, Kl =10, 1]
103 - e
8
° Partial pressures (total pressure = 500 mbar)
B g B ° O Ar
< 102 4 o O 03: 80 mbar
v g 8 8 g O 0z: 80 mbar, NH3: 10 mbar
—
E] 8 °g ° 4 O 03: 5 mbar, NHs: 10 mbar
g o °g°eo N °°o§§ 0§° O NHs: 10 mbar
o
& 0t _gsoo °§sg°°°8° 8 L O Ar(after)
o °o§§§°ego o 08 O 035 mbar
g° %
o® 9
]
100 T T T T

05 10 15 20 25 3.0 35 4.0
L (rlu.)

— Important changes of roughness and surface strain are both visible.
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Single crystals: summary

02 NH3 Pt(111) Pt(100)

(mbar)  (mbar)

80 0 Two rotated hexagonal lattices,  Pt(100)-(2 x 2) bulk Pt304,
Surface oxide after 9 h30 min. and signals shifted in H or K.
Increased surface roughness. Increased surface roughness.

80 10 | Removal of all signals.

5 10 | Decreased surface roughness.

0 10 ‘

0 0 Return to clean surface
but with lower roughness.

5 0 ‘ Rotated lattices also visible.

Surface oxide measured later.
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Single crystals: summary

0O, NH3 Pt(111) Pt(100)

(mbar)  (mbar)

80 0 Two rotated hexagonal lattices,  Pt(100)-(2 x 2) bulk Pt304,
Surface oxide after 9 h30 min. and signals shifted in H or K.
Increased surface roughness. Increased surface roughness.

80 10 | Removal of all signals. (10 x 10) reconstructions.

5 10 | Decreased surface roughness. Pt(100)-Hex reconstruction.

0 10 ‘

0 0 Return to clean surface
but with lower roughness.

5 0 ‘ Rotated lattices also visible.

Surface oxide measured later.

IIl. Pt single crystals during ammonia oxidation
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Single crystals: summary

02 NHs Pt(111) Pt(100)
(mbar)  (mbar)
80 0 Two rotated hexagonal lattices,  Pt(100)-(2 x 2) bulk Pt304,
Surface oxide after 9 h30 min. and signals shifted in H or K.
Increased surface roughness. Increased surface roughness.
80 10 | Removal of all signals. (10 x 10) reconstructions.
5 10 | Decreased surface roughness. Pt(100)-Hex reconstruction.
0 10 Progressive removal of Pt(100)-Hex.
Decreased surface roughness.
0 0 Return to clean surface
but with lower roughness.
5 0 ‘ Rotated lattices also visible.

Surface oxide measured later.

IIl. Pt single crystals during ammonia oxidation
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Single crystals: summary

0O, NH3 Pt(111) Pt(100)
(mbar)  (mbar)
80 0 Two rotated hexagonal lattices,  Pt(100)-(2 x 2) bulk Pt304,
Surface oxide after 9 h30 min. and signals shifted in H or K.
Increased surface roughness. Increased surface roughness.
80 10 | Removal of all signals. (10 x 10) reconstructions.
5 10 | Decreased surface roughness. Pt(100)-Hex reconstruction.
0 10 Progressive removal of Pt(100)-Hex.
Decreased surface roughness.
0 0 Return to clean surface Return to clean surface
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Single crystals: summary
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Single crystals: summary

0O, NH3 Pt(111) Pt(100)
(mbar)  (mbar)
80 0 Two rotated hexagonal lattices,  Pt(100)-(2 x 2) bulk Pt304,
Surface oxide after 9 h30 min. and signals shifted in H or K.
Increased surface roughness. Increased surface roughness.
80 10 | Removal of all signals. (10 x 10) reconstructions.
5 10 | Decreased surface roughness. Pt(100)-Hex reconstruction.
0 10 Progressive removal of Pt(100)-Hex.
Decreased surface roughness.
0 0 Return to clean surface Return to clean surface
but with lower roughness. but with lower roughness.
5 0 ‘ Rotated lattices also visible. Transient structures,

Surface oxide measured later.

no Pt304, or shifted signals.

Can we identify the surface species responsible for the different behaviour?

IIl. Pt single crystals during ammonia oxidation
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a) PH{100), O 1s, E phoson =700 eV
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IIl. Pt single crystals during ammonia oxidation
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X-ray photoelectron spectroscopy

a) PH{100), O 1s, E phoson =700 eV b) P(111), O 1, E pjoron =700 &V
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Pxo,(100) > Pno,11), linked to oxygen adsorption?

IIl. Pt single crystals during ammonia oxidation 58
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Nitrogen fertilizer use per hectare of cropland, 2017

Application of nitrogen fertilizer, measured in kilograms of total nutrient per hectare of cropland.

Nodata Okg  1kg 25kg 5kg 125kg 25kg 50kg 75kg 100kg 250kg 500kg
\ ]| \ I \ L

Source: UN Food and Agricultural Organization (FAO) OurWorldInData.org/fertilizers « CC BY
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Environmental impact: NO,

N02 |eve|s PARIS
2012 2013 2014
2018

2015 2016 2017

Annual average (Hg/m?)

= L T— P

Annual limit of 40 ug/m?, adapted from®.

® NO, have a dramatic impact (toxic, corrosive, form smog and acid rain).

® Reducing NO possible with NH3, but un-reacted NH3 also toxic and corrosive.

SEtat de la qualité de I'air a Paris, 2023
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Reaction mechanism

Reaction Reactant state Transition state Product state
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Reaction mechanism

Reaction Reactant state Transition state Product state

® Langmuir-Hinshelwood mechanism ® O, overall responsible on Pt(111),
favoured’.. OH, on Pt(100).

® NH3; de-hydrogenation facilitated by ® Low oxygen coverage — N, high
adsorbed oxygen species. oxygen coverage —NO.

“Imbihl et al. Catalytic ammonia oxidation on platinum: Mechanism and catalyst restructuring at high and low
pressure, PCCP, 2007
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Pt(111)||a-Al,03(0001) epitaxy
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—  (111)-orientated Pt particles on substrate.




Pt(111)[|a-Al,05(0001)

epitaxy
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Pt(111)||a-Al,05(0001) epitaxy
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No change of intensity for the Pt Bragg peaks during the reaction.



Pt(111)||a-Al,05(0001) epitaxy

Argon 1NH;3:00;
105 — 300°C —— 500°C —— 600°C — 300°C —— 500°C —— 600°C
102 4
107 - E
1 NH3:0.5 0, 1NH;:10;
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10° 4 R
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2
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1071 -
1NH3:20; 1NH;:80;
— 300°C —— 500°C —— 600°C — 300°C —— 500°C
-100 -80 -60 —-40 -20 0
Omega (°)

No change of intensity for the Pt Bragg peaks during the reaction.
—  Stable epitaxy up to 600 °C, 80 mbar of O, and 10 mbar of NHjs.



{110} facet signal during SXRD
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Collective behaviour of Pt particles
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[111] stereographic projection (for a face-centred cubic lattice).



Facets retrieval

A mesh of the surface is created by the
marching-cubes algorithm, resulting in a
surface made out of triangles, that in 3D can
take up to 26 different orientations.

The surface is then smoothed to remove the
steps created by the voxel size.

The main parameters to retrieve the facets
are:
® facet normal direction.

® facet size.

A mesh is constructed from the particle ® roughness tolerance.
voxels.

'Facet Analyser: ParaView plugin for automated facet detection and measurement of interplanar angles of
tomographic objects. Grothausmann, R., Beare, R. (2015) The MIDAS Journal



Diffraction patterns - small particle g ~ 350 nm
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Diffraction patterns - large particle & ~ 800 nm

a) 300°C — Before reaction cycle
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Homogeneous strain
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— Different behaviours are observed!



Strain evolutions - large particle @ ~ 800 nm
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Large variation of the FWHM at 300 °C and 400 °C during ammonia introduction / removal.



Strain evolutions - small particle & ~ 350 nm
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Pt particles: RGA signals during BCDI (300°C)
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Pt particles: RGA signals during BCDI (400°C)
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Pt particles: RGA signals during BCDI
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Similar behaviour as reported in literature.

Transition observed when O, / NH3 : 2 — increased selectivity towards NO.



Pt particles: RGA signals during SXRD (300°C)
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Pt particles: RGA signals during SXRD (500°C)
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Pt particles: RGA signals during SXRD (600°C)
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Pt particles: RGA signals during SXRD
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Software architecture

Controller
updates . overwrites
———{ Workflow for fast analysis

(pynx & bcdi packages)

View Result
Remote access GUI initializes | Dataset class based on NeXuS architecture




Software architecture

Controller overwrites
Workflow for fast analysis (pynx, bedi, ...)

Result
Dataset class based on
NeXuS architecture

Advanced users can use terminal scripts
for quick analysis.




Gwaihir video example

External users first approach to BCDI.



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




Pt(111): structures appear under 80 mbar of O,
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Reflectivity measurements indicate the presence of a 14 A thick layer.
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(c) [H, K] =[1.78, 0]

.06
-1.82-1.80-1.78 -1.76
H(rlLu.)

Structure factor

Pt(111): structures appear under 80 mbar of O,

(b) [H, K] =[0.15, 0.74]
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~ —0.73
3
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¥
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UDcpomo% oy 80 mbar O,
25 4 Oo © o o (a) 6t=10h45—13h05
o oﬂ o (b) 6t=13h35-14h17
201 o900, o (c) 6t=20n30 - 2120
154
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B
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0.0 0.5 1.0 15 2.0 2.5 3.0
L(rlu.)



Pt(111): reflectivity during ammonia oxidation

10! a) Reflectivity curves under inert argon atmosphere b) Reflectivity curves under reacting conditions
O Owp=2.374 Reactant partial pressures
10° 4 . Osup=0.814 i °g (O 10 mbar NH3 + 80 mbar Oy, Osup = 2.80A
1ot & After complete oxidation cycle 10 mbar NHs + 5 mbar O,, Osp = 1.24A
3 : (O 10 mbar NHz, 05 =1.01A
L1024 1
>
£
21073 4 5
2
f=
= 10744 E
1075 4 E
10-° T T T T T T T T T T T T
0 1 2 4 5 6 0 1 2 4 5 6

High roughness under oxygen, and important O, / NHs ratios.



Pt(111): reflectivity during ammonia oxidation

10! a) Reflectivity curves under inert argon atmosphere b) Reflectivity curves under reacting conditions
O Owp=2.374 Reactant partial pressures
10° 4 . Osup=0.814 i °g (O 10 mbar NH3 + 80 mbar Oy, Osup = 2.80A
1ot & After complete oxidation cycle 10 mbar NHs + 5 mbar O,, Osp = 1.24A
3 : (O 10 mbar NHz, 05 =1.01A
L1024 1
>
£
21073 4 5
2
f=
= 10744 E
1075 4 E
10-° T T T T T T T T T T T T
0 1 2 4 5 6 0 1 2 4 5 6

High roughness under oxygen, and important O, / NHs ratios.

Low roughness under low O2 / NHj ratios, and ammonia.



Pt(111): crystal truncation rods




Pt(111): crystal truncation

A
Y N 7
o0 -

Roughness (a.u.)

a) b)
Y Y
0104y v
0154
0.08 1
g Surface layer
0.104 < 0.0 { U y a
£ .,
& 1 'z, {B. A}
0.04 v
0.05 1
0.02 4
Y
0.00 0.004 A A A A A A A A

UHV Ar 800, 800, 50, 10 NH; Ar
before + + after
10 NH3 10 NH3
Partial pressure in XCAT reactor (mbar)

50,

UHV Ar 800, 800; 50; 10NH; Ar 50
before + after
10 NH3 10 NH;
Partial pressure in XCAT reactor (mbar)




Pt(111): x-ray photoelectron spectroscopy

Pt(111), Pt 4f7/2, Ephoton=250 eV, increased to Epnoton=550 eV after O,: 8.8 mbar

Pt(111) bulk . .
71.0 eV Partial pressures in reactor
| O, Pt(111) surface — Ar1mbar
71.1evV 70.9 eV

=== 0,: 8.8 mbar

0,: 8.8 mbar
NH3: 1.1 mbar

03: 0.55 mbar
NH3: 1.1 mbar

=== NH;3: 1.1 mbar

=== Ar: 1 mbar

2z
Z |
2
I
€ 0,: 0.55 mbar
73.0 72.5 72.0 715 71.0 70.5 70.0 69.5

Binding energy (eV)
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Pt(111): x-ray photoelectron spectroscopy

Ar 1 0 0 0 0 1 0
Partial pressures (mbar) NHz | 0 0 11 11 11 0 0

02 0 8.8 8.8 0.55 0 0 0.55
Gas signals (decreasing Ar 02 02, HoO, NO  H,0, NH3 Hj, NH;  Ar (o))
pressure order) NHs, N2, N2O Np, Ha N>

N 1s: peak positions No data No peak 402.6eV 404.1eV 405.3eV 400.4eV  No peak

399.8eV 400.8eV  398.4eV
397.5eV 398.4eV

Attributed surface species Not indexed Na,g Nag NHs .

NHs . NH3 ¢ NH, .
N. NH, .

O 1s: peak positions 532.4eV  538.2eV  538.5eV 534.0eV 532.4eV  534.0eV 538.3eV
537.1eV  537.5eV 532.0eV 532.4eV  537.2eV
531.4eV  534.0eV 531.4eV
529.7¢V 529.7¢V

Attributed surface species H>0, O2¢ O2¢ H2O, H,0, H2O, O2¢
Oz¢ Oz H,0, H>0, Oz
OH, H20, OH,

0, 0,

Indexing of peaks measured during ammonia oxidation of the Pt(111) surface.



Partial pressures in reactor

= 1) Ar: 1 mbar

= 2) O3: 8.8 mbar

3) O,: 8.8 mbar
NH3: 1.1 mbar

4) O,: 0.55 mbar
NH3: 1.1 mbar

= 5) NH3: 1.1 mbar

= 6) Ar: 1 mbar

7) O3: 0.55 mbar

Intensity (a.u.)

1.01

a)

Pt(111), O 15, Ephoton=700 eV

b) Pt(111), N 15, Eproton=700 eV

| |
O3, OH, O,

1.01

539

537 535 533 531 529
Binding energy (eV)

407

405 403 401 399
Binding energy (eV)

397



Pt(100): structures appear under 80 mbar of O,

Argon NHs (o}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

Bulk Pt304 is formed epitaxied on

the Pt(100) surface.

Structure factor
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Pt(100): reaction conditions, O, / NH3 : 8

Argon NHs (o}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

The addition of NH3 removes the
shifted peaks.

K (r.l.u.)

H (r.l.u.)

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5



Pt(100): reaction conditions, O, / NH3 : 8

Argon NHs (o}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

The addition of NH3 removes the

shifted peaks.

K (r.l.u.)

0.0

_0.5,

-1.0

0.0 0.5 1.0 1.5
H(r.l.u.)

Peaks linked to Pt304 are still visible.

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5



Pt(100): reaction conditions, O, / NH3 : 8

Argon 0
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

The addition of NH3 removes the
shifted peaks.

K (r.l.u.)

0.0
—0.51

-1.0

0.0 0.5

1.0 1.5
H (r.l.u.)

Peaks linked to Pt304 are still visible.

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

The heater has failed during the reacting conditions.



Pt(100): structures appear under 80 mbar of O,

Argon NHs (o}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

The sample was cleaned and put

again under oxygen atmosphere.

K (r.l.u.)

_0.8,

_0.9,

—1.11

0.3 0.4 0.5 0.6
H (r.l.u.)




Pt(100): structures appear under 80 mbar of O,

Argon NHs (o}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction

cycle.

In experimental order.

The sample was cleaned and put

again under oxygen atmosphere.

K (r.l.u.)

_0.8,

_0.9,

—1.11

0.3 0.4 0.5 0.6
H (r.l.u.)

Similar in-plane signals are observed!




Pt(100): reaction conditions, O, / NH3 : 8

Argon NHs (o}
(mbar) | (mbar) | (mbar)
500 0 0

420 0 80

410 10 80
485 10 5

490 10 0

500 0 0

495 0 5

Partial pressures during reaction
cycle.
In experimental order.

(10 x 10) reconstructions observed.

Reaction conditions favour NO .

Structure factor

124

104

80 mbar O, + 10 mbar NH3
o [HKI=[0.5,-1] o [H,KI=10,-1.2]
[H, Kl =1[05,-091] o [H KI=[1.9,0]
o o
o
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o
o o
o
‘o ° ooo °
00 © 03080000000 °,
o o
2000 °° o 00000000000000000000 082%
6 403 o o o o
© ooyl o %8
o ° 00 000
o © o S 09%0 ©
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Pt(100): reaction conditions, Oy / NH3 : 0.5

00000000000000 5 mbar O, + 10 mbar NH3
Argon NH; 0, 5 2 : {: E} i {gve-ljloa]
(mbar) | (mbar) | (mbar) ' ——
500 0 0 20 o000,
420 0 80 2 oo,
410 10 80 S 00,
485 10 5 g
490 10 0 = %
500 0 0 10 °
495 0 5 o
Partial pressures during reaction 5 °
cycle. ! | ‘ ! | ‘ °
In experimental order. 00 03 1o L(r_1|_'3_) 20 23 30

Lowering O- pressure to conditions
Werng Epr >sur neiton —  Pt(100)-Hex reconstruction.

avoring N> .
Pt(100)-Hex is a monolayer, responsible for N

selectivity?



Pt(100): crystal truncation rods

a) b)
0.4
06 Surface layer
3 051 g e
8 ; 0.2 A Oz
= 3 <« Oza
2041 2 o014
1] o .
3 9
€ 031 8 004 <« 4 < < < %
Y o1 L X X
a £ -0.1
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3 01 g
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Important roughness and strain evolutions are measured!



Pt(100): Pt(100)-(2 x 2) bulk Pt30,4

Pt30,4 unit cell

—===Pt(100) unit cell

. Pt(100): Pt at z={0, -1}
>< Pt(100): Pt at z=-0.5
v

Pts04: Pt at z=0.5



100

x-ray photoelectron spectroscopy

Pt(100), Pt 4f7/2, Epnoton=550 eV

Partial pressures in reactor

== 1) Ar: 1 mbar

== 2) 03: 8.8 mbar

3) 0,: 8.8 mbar
NH3: 1.1 mbar

4) 0;: 0.55 mbar
NH3: 1.1 mbar

== 5) NH3: 1.1 mbar

2
2 6) O2: 0.55 mbar
2
<
== 7)Ar: 1 mbar
N
\\\:\
A}
LN
b
N
73.0 725 72.0 715 71.0 70.5 70.0 69.5

Binding energy (eV)
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Ar 1 0 0 0 0 0 1
Partial pressures (mbar) ~ NH; | 0 0 11 11 11 0 0
0> 0 8.8 8.8 0.55 0 0.55 0
Gas presence (decreasing Ar (o2 02, H20, NO H,O, NH3 H, NH; O2 Ar
pressure order) ‘ NHs, N2, N2O N2, H N2
N 1s: peak positions 403.6eV No peak 404.3eV 404.3eV 404.9¢V  No peak No peak
400.0eV 400.6eV
Attributed surface species Not assigned N2, & NO, \P N2
N, NHx
O 1s: peak positions 531.6eV 538.3eV  538.4eV 534.3eV 532.4eV  538.3eV  532eV
537.2eV  537.3eV 532.1eV 537.2eV
529.7¢V  533.7eV 531.4eV
529.7eV 530.6eV
529.7eV
Attributed surface species H»0, Oz O2¢ H>0, H.0, O2¢ H>0,
Oz Oz, H20, Oag
0, H.0, 0,
0, 0,
0,

Indexing of peaks measured during ammonia oxidation of the Pt(100) surface.



Partial pressures in reactor

= 1) Ar: 1 mbar

= 2) O3: 8.8 mbar

3) O,: 8.8 mbar
NH3: 1.1 mbar

4) O,: 0.55 mbar
NH3: 1.1 mbar

= 5) NH3: 1.1 mbar

6) O3: 0.55 mbar

= 7) Ar: 1 mbar

Intensity (a.u.)

2.4 1

2.24

2.0 A

1.8

1.6

1.4 1

1.2

1.01

a) Pt(100), O 15, Epnoton=700 eV

b) Pt(100), N 15, Ephoton=700 eV

[0}

H,0,

2.4 1

1.04

539

537 535 533 531
Binding energy (eV)

529

407 405 403 401 399 397
Binding energy (eV)



Pt(111) & Pt(100): RGA signals during SXRD

& XPS

SXRD experiment on Pt(111) SXRD experiment on Pt(100)

12 *
-~ Y NO
10 LN
I - N0
38 * H,0
o *
a6 * Hy
° *
2 4
E|* *
5 2
24 X X X X

0 X X Bd X

8 0.5 0 8 0.5 0
XPS experiment on Pt(111) XPS experiment on Pt(100)
o
g Y NO
@20
I ¥ A N
g < N0
S1s H0
3 2
310 * Hy
o
]
5 517 .
g *
2 ol% + 2% 4 2
8 0.5 0 8 0.5 0

03 / NHj3 ratio O3 / NHj; ratio
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